Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  tpass Unicode version

Theorem tpass 4128
 Description: Split off the first element of an unordered triple. (Contributed by Mario Carneiro, 5-Jan-2016.)
Assertion
Ref Expression
tpass

Proof of Theorem tpass
StepHypRef Expression
1 df-tp 4034 . 2
2 tprot 4125 . 2
3 uncom 3647 . 2
41, 2, 33eqtr4i 2496 1
 Colors of variables: wff setvar class Syntax hints:  =wceq 1395  u.cun 3473  {csn 4029  {cpr 4031  {ctp 4033 This theorem is referenced by:  qdassr  4130  en3  7777  wuntp  9110  ex-pw  25150 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-v 3111  df-un 3480  df-sn 4030  df-pr 4032  df-tp 4034
 Copyright terms: Public domain W3C validator