![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > tposoprab | Unicode version |
Description: Transposition of a class of ordered triples. (Contributed by Mario Carneiro, 10-Sep-2015.) |
Ref | Expression |
---|---|
tposoprab.1 |
Ref | Expression |
---|---|
tposoprab |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tposoprab.1 | . . 3 | |
2 | 1 | tposeqi 7007 | . 2 |
3 | reldmoprab 6387 | . . 3 | |
4 | dftpos3 6992 | . . 3 | |
5 | 3, 4 | ax-mp 5 | . 2 |
6 | nfcv 2619 | . . . . 5 | |
7 | nfoprab2 6347 | . . . . 5 | |
8 | nfcv 2619 | . . . . 5 | |
9 | 6, 7, 8 | nfbr 4496 | . . . 4 |
10 | nfcv 2619 | . . . . 5 | |
11 | nfoprab1 6346 | . . . . 5 | |
12 | nfcv 2619 | . . . . 5 | |
13 | 10, 11, 12 | nfbr 4496 | . . . 4 |
14 | nfv 1707 | . . . 4 | |
15 | nfv 1707 | . . . 4 | |
16 | opeq12 4219 | . . . . . 6 | |
17 | 16 | ancoms 453 | . . . . 5 |
18 | 17 | breq1d 4462 | . . . 4 |
19 | 9, 13, 14, 15, 18 | cbvoprab12 6371 | . . 3 |
20 | nfcv 2619 | . . . . 5 | |
21 | nfoprab3 6348 | . . . . 5 | |
22 | nfcv 2619 | . . . . 5 | |
23 | 20, 21, 22 | nfbr 4496 | . . . 4 |
24 | nfv 1707 | . . . 4 | |
25 | breq2 4456 | . . . . 5 | |
26 | df-br 4453 | . . . . . 6 | |
27 | oprabid 6323 | . . . . . 6 | |
28 | 26, 27 | bitri 249 | . . . . 5 |
29 | 25, 28 | syl6bb 261 | . . . 4 |
30 | 23, 24, 29 | cbvoprab3 6373 | . . 3 |
31 | 19, 30 | eqtri 2486 | . 2 |
32 | 2, 5, 31 | 3eqtri 2490 | 1 |
Colors of variables: wff setvar class |
Syntax hints: /\ wa 369 = wceq 1395
e. wcel 1818 <. cop 4035 class class class wbr 4452
dom cdm 5004 Rel wrel 5009 { coprab 6297 tpos ctpos 6973 |
This theorem is referenced by: tposmpt2 7011 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-fv 5601 df-oprab 6300 df-tpos 6974 |
Copyright terms: Public domain | W3C validator |