![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > tpprceq3 | Unicode version |
Description: An unordered triple is an unordered pair if one of its elements is a proper class or is identical with another element. (Contributed by Alexander van der Vekens, 6-Oct-2017.) |
Ref | Expression |
---|---|
tpprceq3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ianor 488 | . 2 | |
2 | tprot 4125 | . . . 4 | |
3 | df-tp 4034 | . . . . 5 | |
4 | prprc2 4141 | . . . . . . 7 | |
5 | 4 | uneq1d 3656 | . . . . . 6 |
6 | df-pr 4032 | . . . . . . 7 | |
7 | prcom 4108 | . . . . . . 7 | |
8 | 6, 7 | eqtr3i 2488 | . . . . . 6 |
9 | 5, 8 | syl6eq 2514 | . . . . 5 |
10 | 3, 9 | syl5eq 2510 | . . . 4 |
11 | 2, 10 | syl5eq 2510 | . . 3 |
12 | nne 2658 | . . . 4 | |
13 | tppreq3 4135 | . . . . 5 | |
14 | 13 | eqcoms 2469 | . . . 4 |
15 | 12, 14 | sylbi 195 | . . 3 |
16 | 11, 15 | jaoi 379 | . 2 |
17 | 1, 16 | sylbi 195 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
\/ wo 368 /\ wa 369 = wceq 1395
e. wcel 1818 =/= wne 2652 cvv 3109
u. cun 3473 { csn 4029 { cpr 4031
{ ctp 4033 |
This theorem is referenced by: tppreqb 4171 1to3vfriswmgra 25007 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-v 3111 df-dif 3478 df-un 3480 df-nul 3785 df-sn 4030 df-pr 4032 df-tp 4034 |
Copyright terms: Public domain | W3C validator |