![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > tppreqb | Unicode version |
Description: An unordered triple is an unordered pair if and only if one of its elements is a proper class or is identical with one of the another elements. (Contributed by Alexander van der Vekens, 15-Jan-2018.) |
Ref | Expression |
---|---|
tppreqb |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3ianor 990 | . . . 4 | |
2 | df-3or 974 | . . . 4 | |
3 | 1, 2 | bitri 249 | . . 3 |
4 | orass 524 | . . . . 5 | |
5 | ianor 488 | . . . . . . . 8 | |
6 | tpprceq3 4170 | . . . . . . . 8 | |
7 | 5, 6 | sylbir 213 | . . . . . . 7 |
8 | tpcoma 4126 | . . . . . . 7 | |
9 | prcom 4108 | . . . . . . 7 | |
10 | 7, 8, 9 | 3eqtr3g 2521 | . . . . . 6 |
11 | orcom 387 | . . . . . . . 8 | |
12 | ianor 488 | . . . . . . . 8 | |
13 | 11, 12 | bitr4i 252 | . . . . . . 7 |
14 | tpprceq3 4170 | . . . . . . 7 | |
15 | 13, 14 | sylbi 195 | . . . . . 6 |
16 | 10, 15 | jaoi 379 | . . . . 5 |
17 | 4, 16 | sylbi 195 | . . . 4 |
18 | 17 | orcs 394 | . . 3 |
19 | 3, 18 | sylbi 195 | . 2 |
20 | df-tp 4034 | . . . 4 | |
21 | 20 | eqeq1i 2464 | . . 3 |
22 | ssequn2 3676 | . . . 4 | |
23 | snssg 4163 | . . . . . . 7 | |
24 | elpri 4049 | . . . . . . . 8 | |
25 | nne 2658 | . . . . . . . . . 10 | |
26 | 3mix2 1166 | . . . . . . . . . 10 | |
27 | 25, 26 | sylbir 213 | . . . . . . . . 9 |
28 | nne 2658 | . . . . . . . . . 10 | |
29 | 3mix3 1167 | . . . . . . . . . 10 | |
30 | 28, 29 | sylbir 213 | . . . . . . . . 9 |
31 | 27, 30 | jaoi 379 | . . . . . . . 8 |
32 | 24, 31 | syl 16 | . . . . . . 7 |
33 | 23, 32 | syl6bir 229 | . . . . . 6 |
34 | 3mix1 1165 | . . . . . . 7 | |
35 | 34 | a1d 25 | . . . . . 6 |
36 | 33, 35 | pm2.61i 164 | . . . . 5 |
37 | 36, 1 | sylibr 212 | . . . 4 |
38 | 22, 37 | sylbir 213 | . . 3 |
39 | 21, 38 | sylbi 195 | . 2 |
40 | 19, 39 | impbii 188 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 \/ wo 368 /\ wa 369
\/ w3o 972 /\ w3a 973 = wceq 1395
e. wcel 1818 =/= wne 2652 cvv 3109
u. cun 3473 C_ wss 3475 { csn 4029
{ cpr 4031 { ctp 4033 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-sn 4030 df-pr 4032 df-tp 4034 |
Copyright terms: Public domain | W3C validator |