![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > tpss | Unicode version |
Description: A triplet of elements of a class is a subset of the class. (Contributed by NM, 9-Apr-1994.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
Ref | Expression |
---|---|
tpss.1 | |
tpss.2 | |
tpss.3 |
Ref | Expression |
---|---|
tpss |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unss 3677 | . 2 | |
2 | df-3an 975 | . . 3 | |
3 | tpss.1 | . . . . 5 | |
4 | tpss.2 | . . . . 5 | |
5 | 3, 4 | prss 4184 | . . . 4 |
6 | tpss.3 | . . . . 5 | |
7 | 6 | snss 4154 | . . . 4 |
8 | 5, 7 | anbi12i 697 | . . 3 |
9 | 2, 8 | bitri 249 | . 2 |
10 | df-tp 4034 | . . 3 | |
11 | 10 | sseq1i 3527 | . 2 |
12 | 1, 9, 11 | 3bitr4i 277 | 1 |
Colors of variables: wff setvar class |
Syntax hints: <-> wb 184 /\ wa 369
/\ w3a 973 e. wcel 1818 cvv 3109
u. cun 3473 C_ wss 3475 { csn 4029
{ cpr 4031 { ctp 4033 |
This theorem is referenced by: 1cubr 23173 constr3trllem1 24650 rabren3dioph 30749 fourierdlem102 31991 fourierdlem114 32003 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-v 3111 df-un 3480 df-in 3482 df-ss 3489 df-sn 4030 df-pr 4032 df-tp 4034 |
Copyright terms: Public domain | W3C validator |