![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > trint | Unicode version |
Description: The intersection of a class of transitive sets is transitive. Exercise 5(b) of [Enderton] p. 73. (Contributed by Scott Fenton, 25-Feb-2011.) |
Ref | Expression |
---|---|
trint |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dftr3 4549 | . . . . 5 | |
2 | 1 | ralbii 2888 | . . . 4 |
3 | df-ral 2812 | . . . . . 6 | |
4 | 3 | ralbii 2888 | . . . . 5 |
5 | ralcom4 3128 | . . . . 5 | |
6 | 4, 5 | bitri 249 | . . . 4 |
7 | 2, 6 | sylbb 197 | . . 3 |
8 | ralim 2846 | . . . 4 | |
9 | 8 | alimi 1633 | . . 3 |
10 | 7, 9 | syl 16 | . 2 |
11 | dftr3 4549 | . . 3 | |
12 | df-ral 2812 | . . . 4 | |
13 | vex 3112 | . . . . . . 7 | |
14 | 13 | elint2 4293 | . . . . . 6 |
15 | ssint 4302 | . . . . . 6 | |
16 | 14, 15 | imbi12i 326 | . . . . 5 |
17 | 16 | albii 1640 | . . . 4 |
18 | 12, 17 | bitri 249 | . . 3 |
19 | 11, 18 | bitri 249 | . 2 |
20 | 10, 19 | sylibr 212 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 A. wal 1393
e. wcel 1818 A. wral 2807 C_ wss 3475
|^| cint 4286
Tr wtr 4545 |
This theorem is referenced by: tctr 8192 intwun 9134 intgru 9213 dfon2lem8 29222 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ral 2812 df-v 3111 df-in 3482 df-ss 3489 df-uni 4250 df-int 4287 df-tr 4546 |
Copyright terms: Public domain | W3C validator |