Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  trint0 Unicode version

Theorem trint0 4562
 Description: Any nonempty transitive class includes its intersection. Exercise 2 in [TakeutiZaring] p. 44. (Contributed by Andrew Salmon, 14-Nov-2011.)
Assertion
Ref Expression
trint0

Proof of Theorem trint0
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 n0 3794 . . 3
2 intss1 4301 . . . . 5
3 trss 4554 . . . . . 6
43com12 31 . . . . 5
5 sstr2 3510 . . . . 5
62, 4, 5sylsyld 56 . . . 4
76exlimiv 1722 . . 3
81, 7sylbi 195 . 2
98impcom 430 1
 Colors of variables: wff setvar class Syntax hints:  ->wi 4  /\wa 369  E.wex 1612  e.wcel 1818  =/=wne 2652  C_wss 3475   c0 3784  |^|cint 4286  Trwtr 4545 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-v 3111  df-dif 3478  df-in 3482  df-ss 3489  df-nul 3785  df-uni 4250  df-int 4287  df-tr 4546
 Copyright terms: Public domain W3C validator