![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > trint0 | Unicode version |
Description: Any nonempty transitive class includes its intersection. Exercise 2 in [TakeutiZaring] p. 44. (Contributed by Andrew Salmon, 14-Nov-2011.) |
Ref | Expression |
---|---|
trint0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0 3794 | . . 3 | |
2 | intss1 4301 | . . . . 5 | |
3 | trss 4554 | . . . . . 6 | |
4 | 3 | com12 31 | . . . . 5 |
5 | sstr2 3510 | . . . . 5 | |
6 | 2, 4, 5 | sylsyld 56 | . . . 4 |
7 | 6 | exlimiv 1722 | . . 3 |
8 | 1, 7 | sylbi 195 | . 2 |
9 | 8 | impcom 430 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
E. wex 1612 e. wcel 1818 =/= wne 2652
C_ wss 3475 c0 3784 |^| cint 4286 Tr wtr 4545 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-v 3111 df-dif 3478 df-in 3482 df-ss 3489 df-nul 3785 df-uni 4250 df-int 4287 df-tr 4546 |
Copyright terms: Public domain | W3C validator |