![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > triun | Unicode version |
Description: The indexed union of a class of transitive sets is transitive. (Contributed by Mario Carneiro, 16-Nov-2014.) |
Ref | Expression |
---|---|
triun |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eliun 4335 | . . . 4 | |
2 | r19.29 2992 | . . . . 5 | |
3 | nfcv 2619 | . . . . . . 7 | |
4 | nfiu1 4360 | . . . . . . 7 | |
5 | 3, 4 | nfss 3496 | . . . . . 6 |
6 | trss 4554 | . . . . . . . 8 | |
7 | 6 | imp 429 | . . . . . . 7 |
8 | ssiun2 4373 | . . . . . . . 8 | |
9 | sstr2 3510 | . . . . . . . 8 | |
10 | 8, 9 | syl5com 30 | . . . . . . 7 |
11 | 7, 10 | syl5 32 | . . . . . 6 |
12 | 5, 11 | rexlimi 2939 | . . . . 5 |
13 | 2, 12 | syl 16 | . . . 4 |
14 | 1, 13 | sylan2b 475 | . . 3 |
15 | 14 | ralrimiva 2871 | . 2 |
16 | dftr3 4549 | . 2 | |
17 | 15, 16 | sylibr 212 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
e. wcel 1818 A. wral 2807 E. wrex 2808
C_ wss 3475 U_ ciun 4330 Tr wtr 4545 |
This theorem is referenced by: truni 4559 r1tr 8215 r1elssi 8244 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ral 2812 df-rex 2813 df-v 3111 df-in 3482 df-ss 3489 df-uni 4250 df-iun 4332 df-tr 4546 |
Copyright terms: Public domain | W3C validator |