MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tron Unicode version

Theorem tron 4906
Description: The class of all ordinal numbers is transitive. (Contributed by NM, 4-May-2009.)
Assertion
Ref Expression
tron

Proof of Theorem tron
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dftr3 4549 . 2
2 vex 3112 . . . . . . 7
32elon 4892 . . . . . 6
4 ordelord 4905 . . . . . 6
53, 4sylanb 472 . . . . 5
65ex 434 . . . 4
7 vex 3112 . . . . 5
87elon 4892 . . . 4
96, 8syl6ibr 227 . . 3
109ssrdv 3509 . 2
111, 10mprgbir 2821 1
Colors of variables: wff setvar class
Syntax hints:  e.wcel 1818  C_wss 3475  Trwtr 4545  Ordword 4882   con0 4883
This theorem is referenced by:  ordon  6618  onuninsuci  6675  gruina  9217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-9 1822  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435  ax-sep 4573  ax-nul 4581  ax-pr 4691
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-eu 2286  df-mo 2287  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-dif 3478  df-un 3480  df-in 3482  df-ss 3489  df-nul 3785  df-if 3942  df-sn 4030  df-pr 4032  df-op 4036  df-uni 4250  df-br 4453  df-opab 4511  df-tr 4546  df-eprel 4796  df-po 4805  df-so 4806  df-fr 4843  df-we 4845  df-ord 4886  df-on 4887
  Copyright terms: Public domain W3C validator