MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trubifal Unicode version

Theorem trubifal 1434
Description: A <-> identity. (Contributed by Anthony Hart, 22-Oct-2010.) (Proof shortened by Andrew Salmon, 13-May-2011.)
Assertion
Ref Expression
trubifal

Proof of Theorem trubifal
StepHypRef Expression
1 nottru 1431 . . 3
2 nbbn 358 . . 3
31, 2mpbi 208 . 2
43bifal 1408 1
Colors of variables: wff setvar class
Syntax hints:  -.wn 3  <->wb 184   wtru 1396   wfal 1400
This theorem is referenced by:  falbitru  1435  truxorfal  1442
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-tru 1398  df-fal 1401
  Copyright terms: Public domain W3C validator