MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trunanfal Unicode version

Theorem trunanfal 1438
Description: A -/\ identity. (Contributed by Anthony Hart, 23-Oct-2010.) (Proof shortened by Andrew Salmon, 13-May-2011.)
Assertion
Ref Expression
trunanfal

Proof of Theorem trunanfal
StepHypRef Expression
1 df-nan 1344 . 2
2 truanfal 1420 . . 3
32notbii 296 . 2
4 notfal 1432 . 2
51, 3, 43bitri 271 1
Colors of variables: wff setvar class
Syntax hints:  -.wn 3  <->wb 184  /\wa 369  -/\wnan 1343   wtru 1396   wfal 1400
This theorem is referenced by:  falnantru  1439
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-an 371  df-nan 1344  df-tru 1398  df-fal 1401
  Copyright terms: Public domain W3C validator