![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > tsken | Unicode version |
Description: Third axiom of a Tarski class. A subset of a Tarski class is either equipotent to the class or an element of the class. (Contributed by FL, 30-Dec-2010.) (Revised by Mario Carneiro, 20-Sep-2014.) |
Ref | Expression |
---|---|
tsken |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpw2g 4615 | . . 3 | |
2 | 1 | biimpar 485 | . 2 |
3 | eltskg 9149 | . . . . 5 | |
4 | 3 | ibi 241 | . . . 4 |
5 | 4 | simprd 463 | . . 3 |
6 | breq1 4455 | . . . . 5 | |
7 | eleq1 2529 | . . . . 5 | |
8 | 6, 7 | orbi12d 709 | . . . 4 |
9 | 8 | rspccva 3209 | . . 3 |
10 | 5, 9 | sylan 471 | . 2 |
11 | 2, 10 | syldan 470 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 \/ wo 368
/\ wa 369 = wceq 1395 e. wcel 1818
A. wral 2807 E. wrex 2808 C_ wss 3475
~P cpw 4012 class class class wbr 4452
cen 7533 ctsk 9147 |
This theorem is referenced by: tskssel 9156 inttsk 9173 r1tskina 9181 tskuni 9182 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-op 4036 df-br 4453 df-tsk 9148 |
Copyright terms: Public domain | W3C validator |