![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > tskint | Unicode version |
Description: The intersection of an element of a transitive Tarski class is an element of the class. (Contributed by FL, 17-Apr-2011.) (Revised by Mario Carneiro, 20-Sep-2014.) |
Ref | Expression |
---|---|
tskint |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1l 1020 | . 2 | |
2 | tskuni 9182 | . . . 4 | |
3 | 2 | 3expa 1196 | . . 3 |
4 | 3 | 3adant3 1016 | . 2 |
5 | intssuni 4309 | . . 3 | |
6 | 5 | 3ad2ant3 1019 | . 2 |
7 | tskss 9157 | . 2 | |
8 | 1, 4, 6, 7 | syl3anc 1228 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
/\ w3a 973 e. wcel 1818 =/= wne 2652
C_ wss 3475 c0 3784 U. cuni 4249 |^| cint 4286
Tr wtr 4545 ctsk 9147 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-inf2 8079 ax-ac2 8864 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-iun 4332 df-iin 4333 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-se 4844 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-isom 5602 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-1st 6800 df-2nd 6801 df-smo 7036 df-recs 7061 df-rdg 7095 df-1o 7149 df-2o 7150 df-oadd 7153 df-er 7330 df-map 7441 df-ixp 7490 df-en 7537 df-dom 7538 df-sdom 7539 df-fin 7540 df-oi 7956 df-har 8005 df-r1 8203 df-card 8341 df-aleph 8342 df-cf 8343 df-acn 8344 df-ac 8518 df-wina 9083 df-ina 9084 df-tsk 9148 |
Copyright terms: Public domain | W3C validator |