![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > tskmcl | Unicode version |
Description: A Tarski class that contains is a Tarski class. (Contributed by FL, 17-Apr-2011.) (Proof shortened by Mario Carneiro, 21-Sep-2014.) |
Ref | Expression |
---|---|
tskmcl |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tskmval 9238 | . . 3 | |
2 | ssrab2 3584 | . . . 4 | |
3 | id 22 | . . . . . . 7 | |
4 | grothtsk 9234 | . . . . . . 7 | |
5 | 3, 4 | syl6eleqr 2556 | . . . . . 6 |
6 | eluni2 4253 | . . . . . 6 | |
7 | 5, 6 | sylib 196 | . . . . 5 |
8 | rabn0 3805 | . . . . 5 | |
9 | 7, 8 | sylibr 212 | . . . 4 |
10 | inttsk 9173 | . . . 4 | |
11 | 2, 9, 10 | sylancr 663 | . . 3 |
12 | 1, 11 | eqeltrd 2545 | . 2 |
13 | fvprc 5865 | . . 3 | |
14 | 0tsk 9154 | . . 3 | |
15 | 13, 14 | syl6eqel 2553 | . 2 |
16 | 12, 15 | pm2.61i 164 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 e. wcel 1818
=/= wne 2652 E. wrex 2808 { crab 2811
cvv 3109
C_ wss 3475 c0 3784 U. cuni 4249 |^| cint 4286
` cfv 5593 ctsk 9147 ctskm 9236 |
This theorem is referenced by: eltskm 9242 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-groth 9222 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-int 4287 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-er 7330 df-en 7537 df-dom 7538 df-tsk 9148 df-tskm 9237 |
Copyright terms: Public domain | W3C validator |