MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tskmval Unicode version

Theorem tskmval 9238
Description: Value of our tarski map. (Contributed by FL, 30-Dec-2010.) (Revised by Mario Carneiro, 20-Sep-2014.)
Assertion
Ref Expression
tskmval
Distinct variable group:   ,

Proof of Theorem tskmval
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 elex 3118 . 2
2 grothtsk 9234 . . . . 5
31, 2syl6eleqr 2556 . . . 4
4 eluni2 4253 . . . 4
53, 4sylib 196 . . 3
6 intexrab 4611 . . 3
75, 6sylib 196 . 2
8 eleq1 2529 . . . . 5
98rabbidv 3101 . . . 4
109inteqd 4291 . . 3
11 df-tskm 9237 . . 3
1210, 11fvmptg 5954 . 2
131, 7, 12syl2anc 661 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  =wceq 1395  e.wcel 1818  E.wrex 2808  {crab 2811   cvv 3109  U.cuni 4249  |^|cint 4286  `cfv 5593   ctsk 9147   ctskm 9236
This theorem is referenced by:  tskmid  9239  tskmcl  9240  sstskm  9241  eltskm  9242
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-8 1820  ax-9 1822  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435  ax-sep 4573  ax-nul 4581  ax-pr 4691  ax-groth 9222
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-eu 2286  df-mo 2287  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-sbc 3328  df-dif 3478  df-un 3480  df-in 3482  df-ss 3489  df-nul 3785  df-if 3942  df-pw 4014  df-sn 4030  df-pr 4032  df-op 4036  df-uni 4250  df-int 4287  df-br 4453  df-opab 4511  df-mpt 4512  df-id 4800  df-xp 5010  df-rel 5011  df-cnv 5012  df-co 5013  df-dm 5014  df-iota 5556  df-fun 5595  df-fv 5601  df-tsk 9148  df-tskm 9237
  Copyright terms: Public domain W3C validator