![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > tskord | Unicode version |
Description: A Tarski class contains all ordinals smaller than it. (Contributed by Mario Carneiro, 8-Jun-2013.) |
Ref | Expression |
---|---|
tskord |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 4455 | . . . . . 6 | |
2 | 1 | anbi2d 703 | . . . . 5 |
3 | eleq1 2529 | . . . . 5 | |
4 | 2, 3 | imbi12d 320 | . . . 4 |
5 | breq1 4455 | . . . . . 6 | |
6 | 5 | anbi2d 703 | . . . . 5 |
7 | eleq1 2529 | . . . . 5 | |
8 | 6, 7 | imbi12d 320 | . . . 4 |
9 | simplrl 761 | . . . . . . . . 9 | |
10 | onelss 4925 | . . . . . . . . . . . . 13 | |
11 | ssdomg 7581 | . . . . . . . . . . . . 13 | |
12 | 10, 11 | syld 44 | . . . . . . . . . . . 12 |
13 | 12 | imp 429 | . . . . . . . . . . 11 |
14 | 13 | adantlr 714 | . . . . . . . . . 10 |
15 | simplrr 762 | . . . . . . . . . 10 | |
16 | domsdomtr 7672 | . . . . . . . . . 10 | |
17 | 14, 15, 16 | syl2anc 661 | . . . . . . . . 9 |
18 | pm2.27 39 | . . . . . . . . 9 | |
19 | 9, 17, 18 | syl2anc 661 | . . . . . . . 8 |
20 | 19 | ralimdva 2865 | . . . . . . 7 |
21 | dfss3 3493 | . . . . . . . . . . 11 | |
22 | tskssel 9156 | . . . . . . . . . . . 12 | |
23 | 22 | 3exp 1195 | . . . . . . . . . . 11 |
24 | 21, 23 | syl5bir 218 | . . . . . . . . . 10 |
25 | 24 | com23 78 | . . . . . . . . 9 |
26 | 25 | imp 429 | . . . . . . . 8 |
27 | 26 | adantl 466 | . . . . . . 7 |
28 | 20, 27 | syld 44 | . . . . . 6 |
29 | 28 | ex 434 | . . . . 5 |
30 | 29 | com23 78 | . . . 4 |
31 | 4, 8, 30 | tfis3 6692 | . . 3 |
32 | 31 | 3impib 1194 | . 2 |
33 | 32 | 3com12 1200 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
/\ w3a 973 = wceq 1395 e. wcel 1818
A. wral 2807 C_ wss 3475 class class class wbr 4452
con0 4883 cdom 7534 csdm 7535 ctsk 9147 |
This theorem is referenced by: tskcard 9180 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-tsk 9148 |
Copyright terms: Public domain | W3C validator |