![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > tskss | Unicode version |
Description: The subsets of an element of a Tarski class belong to the class. (Contributed by FL, 30-Dec-2010.) (Revised by Mario Carneiro, 18-Jun-2013.) |
Ref | Expression |
---|---|
tskss |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpw2g 4615 | . . . 4 | |
2 | 1 | adantl 466 | . . 3 |
3 | tskpwss 9151 | . . . 4 | |
4 | 3 | sseld 3502 | . . 3 |
5 | 2, 4 | sylbird 235 | . 2 |
6 | 5 | 3impia 1193 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 /\ w3a 973 e. wcel 1818
C_ wss 3475 ~P cpw 4012 ctsk 9147 |
This theorem is referenced by: tskin 9158 tsksn 9159 tsksuc 9161 tsk0 9162 tskr1om2 9167 tskint 9184 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-op 4036 df-br 4453 df-tsk 9148 |
Copyright terms: Public domain | W3C validator |