![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > tskssel | Unicode version |
Description: A part of a Tarski class strictly dominated by the class is an element of the class. JFM CLASSES2 th. 2. (Contributed by FL, 22-Feb-2011.) (Proof shortened by Mario Carneiro, 20-Sep-2014.) |
Ref | Expression |
---|---|
tskssel |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sdomnen 7564 | . . 3 | |
2 | 1 | 3ad2ant3 1019 | . 2 |
3 | tsken 9153 | . . . 4 | |
4 | 3 | 3adant3 1016 | . . 3 |
5 | 4 | ord 377 | . 2 |
6 | 2, 5 | mpd 15 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
\/ wo 368 /\ w3a 973 e. wcel 1818
C_ wss 3475 class class class wbr 4452
cen 7533 csdm 7535 ctsk 9147 |
This theorem is referenced by: tskpr 9169 tskwe2 9172 tskord 9179 tskcard 9180 tskurn 9188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-op 4036 df-br 4453 df-sdom 7539 df-tsk 9148 |
Copyright terms: Public domain | W3C validator |