![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > tsksuc | Unicode version |
Description: If an element of a Tarski class is an ordinal number, its successor is an element of the class. JFM CLASSES2 th. 6 (partly). (Contributed by FL, 22-Feb-2011.) (Proof shortened by Mario Carneiro, 20-Sep-2014.) |
Ref | Expression |
---|---|
tsksuc |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 996 | . 2 | |
2 | tskpw 9152 | . . 3 | |
3 | 2 | 3adant2 1015 | . 2 |
4 | eloni 4893 | . . . . 5 | |
5 | 4 | 3ad2ant2 1018 | . . . 4 |
6 | ordunisuc 6667 | . . . 4 | |
7 | eqimss 3555 | . . . 4 | |
8 | 5, 6, 7 | 3syl 20 | . . 3 |
9 | sspwuni 4416 | . . 3 | |
10 | 8, 9 | sylibr 212 | . 2 |
11 | tskss 9157 | . 2 | |
12 | 1, 3, 10, 11 | syl3anc 1228 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ w3a 973
= wceq 1395 e. wcel 1818 C_ wss 3475
~P cpw 4012 U. cuni 4249 Ord word 4882
con0 4883 suc csuc 4885 ctsk 9147 |
This theorem is referenced by: tsk2 9164 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-tr 4546 df-eprel 4796 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-suc 4889 df-tsk 9148 |
Copyright terms: Public domain | W3C validator |