![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > ttukey2g | Unicode version |
Description: The Teichmüller-Tukey Lemma ttukey 8919 with a slightly stronger conclusion: we can set up the maximal element of so that it also contains some given as a subset. (Contributed by Mario Carneiro, 15-May-2015.) |
Ref | Expression |
---|---|
ttukey2g |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difss 3630 | . . . 4 | |
2 | ssnum 8441 | . . . 4 | |
3 | 1, 2 | mpan2 671 | . . 3 |
4 | isnum3 8356 | . . . . 5 | |
5 | bren 7545 | . . . . 5 | |
6 | 4, 5 | bitri 249 | . . . 4 |
7 | simp1 996 | . . . . . . 7 | |
8 | simp2 997 | . . . . . . 7 | |
9 | simp3 998 | . . . . . . 7 | |
10 | dmeq 5208 | . . . . . . . . . . 11 | |
11 | 10 | unieqd 4259 | . . . . . . . . . . 11 |
12 | 10, 11 | eqeq12d 2479 | . . . . . . . . . 10 |
13 | 10 | eqeq1d 2459 | . . . . . . . . . . 11 |
14 | rneq 5233 | . . . . . . . . . . . 12 | |
15 | 14 | unieqd 4259 | . . . . . . . . . . 11 |
16 | 13, 15 | ifbieq2d 3966 | . . . . . . . . . 10 |
17 | id 22 | . . . . . . . . . . . 12 | |
18 | 17, 11 | fveq12d 5877 | . . . . . . . . . . 11 |
19 | 11 | fveq2d 5875 | . . . . . . . . . . . . . . 15 |
20 | 19 | sneqd 4041 | . . . . . . . . . . . . . 14 |
21 | 18, 20 | uneq12d 3658 | . . . . . . . . . . . . 13 |
22 | 21 | eleq1d 2526 | . . . . . . . . . . . 12 |
23 | 22, 20 | ifbieq1d 3964 | . . . . . . . . . . 11 |
24 | 18, 23 | uneq12d 3658 | . . . . . . . . . 10 |
25 | 12, 16, 24 | ifbieq12d 3968 | . . . . . . . . 9 |
26 | 25 | cbvmptv 4543 | . . . . . . . 8 |
27 | recseq 7062 | . . . . . . . 8 | |
28 | 26, 27 | ax-mp 5 | . . . . . . 7 |
29 | 7, 8, 9, 28 | ttukeylem7 8916 | . . . . . 6 |
30 | 29 | 3expib 1199 | . . . . 5 |
31 | 30 | exlimiv 1722 | . . . 4 |
32 | 6, 31 | sylbi 195 | . . 3 |
33 | 3, 32 | syl 16 | . 2 |
34 | 33 | 3impib 1194 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 /\ wa 369 /\ w3a 973
A. wal 1393 = wceq 1395 E. wex 1612
e. wcel 1818 A. wral 2807 E. wrex 2808
cvv 3109
\ cdif 3472 u. cun 3473 i^i cin 3474
C_ wss 3475 C. wpss 3476 c0 3784 if cif 3941 ~P cpw 4012
{ csn 4029 U. cuni 4249 class class class wbr 4452
e. cmpt 4510 dom cdm 5004 ran crn 5005
-1-1-onto-> wf1o 5592
` cfv 5593 recs crecs 7060 cen 7533 cfn 7536 ccrd 8337 |
This theorem is referenced by: ttukeyg 8918 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-se 4844 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-isom 5602 df-riota 6257 df-om 6701 df-recs 7061 df-1o 7149 df-er 7330 df-en 7537 df-dom 7538 df-fin 7540 df-card 8341 |
Copyright terms: Public domain | W3C validator |