![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > ttukeylem1 | Unicode version |
Description: Lemma for ttukey 8919. Expand out the property of being an element of a property of finite character. (Contributed by Mario Carneiro, 15-May-2015.) |
Ref | Expression |
---|---|
ttukeylem.1 | |
ttukeylem.2 | |
ttukeylem.3 |
Ref | Expression |
---|---|
ttukeylem1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3118 | . . 3 | |
2 | 1 | a1i 11 | . 2 |
3 | id 22 | . . . . 5 | |
4 | ssun1 3666 | . . . . . . . 8 | |
5 | undif1 3903 | . . . . . . . 8 | |
6 | 4, 5 | sseqtr4i 3536 | . . . . . . 7 |
7 | fvex 5881 | . . . . . . . . 9 | |
8 | ttukeylem.1 | . . . . . . . . . 10 | |
9 | f1ofo 5828 | . . . . . . . . . 10 | |
10 | 8, 9 | syl 16 | . . . . . . . . 9 |
11 | fornex 6769 | . . . . . . . . 9 | |
12 | 7, 10, 11 | mpsyl 63 | . . . . . . . 8 |
13 | ttukeylem.2 | . . . . . . . 8 | |
14 | unexg 6601 | . . . . . . . 8 | |
15 | 12, 13, 14 | syl2anc 661 | . . . . . . 7 |
16 | ssexg 4598 | . . . . . . 7 | |
17 | 6, 15, 16 | sylancr 663 | . . . . . 6 |
18 | uniexb 6610 | . . . . . 6 | |
19 | 17, 18 | sylibr 212 | . . . . 5 |
20 | ssexg 4598 | . . . . 5 | |
21 | 3, 19, 20 | syl2anr 478 | . . . 4 |
22 | infpwfidom 8430 | . . . 4 | |
23 | reldom 7542 | . . . . 5 | |
24 | 23 | brrelexi 5045 | . . . 4 |
25 | 21, 22, 24 | 3syl 20 | . . 3 |
26 | 25 | ex 434 | . 2 |
27 | ttukeylem.3 | . . 3 | |
28 | eleq1 2529 | . . . . 5 | |
29 | pweq 4015 | . . . . . . 7 | |
30 | 29 | ineq1d 3698 | . . . . . 6 |
31 | 30 | sseq1d 3530 | . . . . 5 |
32 | 28, 31 | bibi12d 321 | . . . 4 |
33 | 32 | spcgv 3194 | . . 3 |
34 | 27, 33 | syl5com 30 | . 2 |
35 | 2, 26, 34 | pm5.21ndd 354 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 A. wal 1393 = wceq 1395
e. wcel 1818 cvv 3109
\ cdif 3472 u. cun 3473 i^i cin 3474
C_ wss 3475 ~P cpw 4012 U. cuni 4249
class class class wbr 4452 -onto-> wfo 5591 -1-1-onto-> wf1o 5592 ` cfv 5593 cdom 7534 cfn 7536 ccrd 8337 |
This theorem is referenced by: ttukeylem2 8911 ttukeylem6 8915 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-om 6701 df-1o 7149 df-en 7537 df-dom 7538 df-fin 7540 |
Copyright terms: Public domain | W3C validator |