![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > tz7.44lem1 | Unicode version |
Description: is a function. Lemma for tz7.44-1 7091, tz7.44-2 7092, and tz7.44-3 7093. (Contributed by NM, 23-Apr-1995.) (Revised by David Abernethy, 19-Jun-2012.) |
Ref | Expression |
---|---|
tz7.44lem1.1 |
Ref | Expression |
---|---|
tz7.44lem1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funopab 5626 | . . 3 | |
2 | fvex 5881 | . . . 4 | |
3 | vex 3112 | . . . . 5 | |
4 | rnexg 6732 | . . . . 5 | |
5 | uniexg 6597 | . . . . 5 | |
6 | 3, 4, 5 | mp2b 10 | . . . 4 |
7 | nlim0 4941 | . . . . . 6 | |
8 | dm0 5221 | . . . . . . 7 | |
9 | limeq 4895 | . . . . . . 7 | |
10 | 8, 9 | ax-mp 5 | . . . . . 6 |
11 | 7, 10 | mtbir 299 | . . . . 5 |
12 | dmeq 5208 | . . . . . . 7 | |
13 | limeq 4895 | . . . . . . 7 | |
14 | 12, 13 | syl 16 | . . . . . 6 |
15 | 14 | biimpa 484 | . . . . 5 |
16 | 11, 15 | mto 176 | . . . 4 |
17 | 2, 6, 16 | moeq3 3276 | . . 3 |
18 | 1, 17 | mpgbir 1622 | . 2 |
19 | tz7.44lem1.1 | . . 3 | |
20 | 19 | funeqi 5613 | . 2 |
21 | 18, 20 | mpbir 209 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 <-> wb 184
\/ wo 368 /\ wa 369 \/ w3o 972
= wceq 1395 e. wcel 1818 E* wmo 2283
cvv 3109
c0 3784 U. cuni 4249 { copab 4509 Lim wlim 4884
dom cdm 5004 ran crn 5005 Fun wfun 5587
` cfv 5593 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-lim 4888 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-iota 5556 df-fun 5595 df-fv 5601 |
Copyright terms: Public domain | W3C validator |