![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > tz7.48-2 | Unicode version |
Description: Proposition 7.48(2) of [TakeutiZaring] p. 51. (Contributed by NM, 9-Feb-1997.) (Revised by David Abernethy, 5-May-2013.) |
Ref | Expression |
---|---|
tz7.48.1 |
Ref | Expression |
---|---|
tz7.48-2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3522 | . . 3 | |
2 | onelon 4908 | . . . . . . . . 9 | |
3 | 2 | ancoms 453 | . . . . . . . 8 |
4 | tz7.48.1 | . . . . . . . . . . 11 | |
5 | fndm 5685 | . . . . . . . . . . 11 | |
6 | 4, 5 | ax-mp 5 | . . . . . . . . . 10 |
7 | 6 | eleq2i 2535 | . . . . . . . . 9 |
8 | fnfun 5683 | . . . . . . . . . . . . 13 | |
9 | 4, 8 | ax-mp 5 | . . . . . . . . . . . 12 |
10 | funfvima 6147 | . . . . . . . . . . . 12 | |
11 | 9, 10 | mpan 670 | . . . . . . . . . . 11 |
12 | 11 | impcom 430 | . . . . . . . . . 10 |
13 | eleq1a 2540 | . . . . . . . . . . 11 | |
14 | eldifn 3626 | . . . . . . . . . . 11 | |
15 | 13, 14 | nsyli 141 | . . . . . . . . . 10 |
16 | 12, 15 | syl 16 | . . . . . . . . 9 |
17 | 7, 16 | sylan2br 476 | . . . . . . . 8 |
18 | 3, 17 | syldan 470 | . . . . . . 7 |
19 | 18 | expimpd 603 | . . . . . 6 |
20 | 19 | com12 31 | . . . . 5 |
21 | 20 | ralrimiv 2869 | . . . 4 |
22 | 21 | ralimiaa 2849 | . . 3 |
23 | 4 | tz7.48lem 7125 | . . 3 |
24 | 1, 22, 23 | sylancr 663 | . 2 |
25 | fnrel 5684 | . . . . . 6 | |
26 | 4, 25 | ax-mp 5 | . . . . 5 |
27 | 6 | eqimssi 3557 | . . . . 5 |
28 | relssres 5316 | . . . . 5 | |
29 | 26, 27, 28 | mp2an 672 | . . . 4 |
30 | 29 | cnveqi 5182 | . . 3 |
31 | 30 | funeqi 5613 | . 2 |
32 | 24, 31 | sylib 196 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
/\ wa 369 = wceq 1395 e. wcel 1818
A. wral 2807 \ cdif 3472 C_ wss 3475
con0 4883 `' ccnv 5003 dom cdm 5004
|` cres 5006 " cima 5007 Rel wrel 5009
Fun wfun 5587
Fn wfn 5588 ` cfv 5593 |
This theorem is referenced by: tz7.48-3 7128 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fv 5601 |
Copyright terms: Public domain | W3C validator |