![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > tz9.13 | Unicode version |
Description: Every set is well-founded, assuming the Axiom of Regularity. In other words, every set belongs to a layer of the cumulative hierarchy of sets. Proposition 9.13 of [TakeutiZaring] p. 78. (Contributed by NM, 23-Sep-2003.) |
Ref | Expression |
---|---|
tz9.13.1 |
Ref | Expression |
---|---|
tz9.13 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tz9.13.1 | . . 3 | |
2 | setind 8186 | . . . 4 | |
3 | ssel 3497 | . . . . . . . 8 | |
4 | vex 3112 | . . . . . . . . 9 | |
5 | eleq1 2529 | . . . . . . . . . 10 | |
6 | 5 | rexbidv 2968 | . . . . . . . . 9 |
7 | 4, 6 | elab 3246 | . . . . . . . 8 |
8 | 3, 7 | syl6ib 226 | . . . . . . 7 |
9 | 8 | ralrimiv 2869 | . . . . . 6 |
10 | vex 3112 | . . . . . . 7 | |
11 | 10 | tz9.12 8229 | . . . . . 6 |
12 | 9, 11 | syl 16 | . . . . 5 |
13 | eleq1 2529 | . . . . . . 7 | |
14 | 13 | rexbidv 2968 | . . . . . 6 |
15 | 10, 14 | elab 3246 | . . . . 5 |
16 | 12, 15 | sylibr 212 | . . . 4 |
17 | 2, 16 | mpg 1620 | . . 3 |
18 | 1, 17 | eleqtrri 2544 | . 2 |
19 | eleq1 2529 | . . . 4 | |
20 | 19 | rexbidv 2968 | . . 3 |
21 | 1, 20 | elab 3246 | . 2 |
22 | 18, 21 | mpbi 208 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 = wceq 1395
e. wcel 1818 { cab 2442 A. wral 2807
E. wrex 2808 cvv 3109
C_ wss 3475 con0 4883 ` cfv 5593 cr1 8201 |
This theorem is referenced by: tz9.13g 8231 elhf2 29832 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-reg 8039 ax-inf2 8079 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-om 6701 df-recs 7061 df-rdg 7095 df-r1 8203 |
Copyright terms: Public domain | W3C validator |