![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > ubmelm1fzo | Unicode version |
Description: The result of subtracting 1 and an integer of a half-open range of nonnegative integers from the upper bound of this range is contained in this range. (Contributed by AV, 23-Mar-2018.) (Revised by AV, 30-Oct-2018.) |
Ref | Expression |
---|---|
ubmelm1fzo |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzo0 11863 | . 2 | |
2 | nnz 10911 | . . . . . . . . 9 | |
3 | 2 | adantr 465 | . . . . . . . 8 |
4 | nn0z 10912 | . . . . . . . . 9 | |
5 | 4 | adantl 466 | . . . . . . . 8 |
6 | 3, 5 | zsubcld 10999 | . . . . . . 7 |
7 | 6 | ancoms 453 | . . . . . 6 |
8 | peano2zm 10932 | . . . . . 6 | |
9 | 7, 8 | syl 16 | . . . . 5 |
10 | 9 | 3adant3 1016 | . . . 4 |
11 | simp3 998 | . . . . . 6 | |
12 | 4, 2 | anim12i 566 | . . . . . . . 8 |
13 | 12 | 3adant3 1016 | . . . . . . 7 |
14 | znnsub 10935 | . . . . . . 7 | |
15 | 13, 14 | syl 16 | . . . . . 6 |
16 | 11, 15 | mpbid 210 | . . . . 5 |
17 | nnm1ge0 10956 | . . . . 5 | |
18 | 16, 17 | syl 16 | . . . 4 |
19 | elnn0z 10902 | . . . 4 | |
20 | 10, 18, 19 | sylanbrc 664 | . . 3 |
21 | simp2 997 | . . 3 | |
22 | nncn 10569 | . . . . . . 7 | |
23 | 22 | adantl 466 | . . . . . 6 |
24 | nn0cn 10830 | . . . . . . 7 | |
25 | 24 | adantr 465 | . . . . . 6 |
26 | 1cnd 9633 | . . . . . 6 | |
27 | 23, 25, 26 | subsub4d 9985 | . . . . 5 |
28 | nn0p1gt0 10850 | . . . . . . 7 | |
29 | 28 | adantr 465 | . . . . . 6 |
30 | nn0re 10829 | . . . . . . . 8 | |
31 | peano2re 9774 | . . . . . . . 8 | |
32 | 30, 31 | syl 16 | . . . . . . 7 |
33 | nnre 10568 | . . . . . . 7 | |
34 | ltsubpos 10069 | . . . . . . 7 | |
35 | 32, 33, 34 | syl2an 477 | . . . . . 6 |
36 | 29, 35 | mpbid 210 | . . . . 5 |
37 | 27, 36 | eqbrtrd 4472 | . . . 4 |
38 | 37 | 3adant3 1016 | . . 3 |
39 | elfzo0 11863 | . . 3 | |
40 | 20, 21, 38, 39 | syl3anbrc 1180 | . 2 |
41 | 1, 40 | sylbi 195 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 /\ w3a 973 e. wcel 1818
class class class wbr 4452 (class class class)co 6296
cc 9511 cr 9512 0 cc0 9513 1 c1 9514
caddc 9516 clt 9649 cle 9650 cmin 9828 cn 10561 cn0 10820
cz 10889 cfzo 11824 |
This theorem is referenced by: repswrevw 12758 cshwidxm1 12777 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-cnex 9569 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-1st 6800 df-2nd 6801 df-recs 7061 df-rdg 7095 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 df-nn 10562 df-n0 10821 df-z 10890 df-uz 11111 df-fz 11702 df-fzo 11825 |
Copyright terms: Public domain | W3C validator |