![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > un00 | Unicode version |
Description: Two classes are empty iff their union is empty. (Contributed by NM, 11-Aug-2004.) |
Ref | Expression |
---|---|
un00 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uneq12 3652 | . . 3 | |
2 | un0 3810 | . . 3 | |
3 | 1, 2 | syl6eq 2514 | . 2 |
4 | ssun1 3666 | . . . . 5 | |
5 | sseq2 3525 | . . . . 5 | |
6 | 4, 5 | mpbii 211 | . . . 4 |
7 | ss0b 3815 | . . . 4 | |
8 | 6, 7 | sylib 196 | . . 3 |
9 | ssun2 3667 | . . . . 5 | |
10 | sseq2 3525 | . . . . 5 | |
11 | 9, 10 | mpbii 211 | . . . 4 |
12 | ss0b 3815 | . . . 4 | |
13 | 11, 12 | sylib 196 | . . 3 |
14 | 8, 13 | jca 532 | . 2 |
15 | 3, 14 | impbii 188 | 1 |
Colors of variables: wff setvar class |
Syntax hints: <-> wb 184 /\ wa 369
= wceq 1395 u. cun 3473 C_ wss 3475
c0 3784 |
This theorem is referenced by: undisj1 3878 undisj2 3879 disjpr2 4092 rankxplim3 8320 ssxr 9675 rpnnen2 13959 wwlknext 24724 asindmre 30102 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 |
Copyright terms: Public domain | W3C validator |