![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > un0addcl | Unicode version |
Description: If is closed under addition, then so is S u. { 0 } .
(Contributed by Mario Carneiro,
17-Jul-2014.) |
Ref | Expression |
---|---|
un0addcl.1 | |
un0addcl.2 | |
un0addcl.3 |
Ref | Expression |
---|---|
un0addcl |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | un0addcl.2 | . . . . 5 | |
2 | 1 | eleq2i 2535 | . . . 4 |
3 | elun 3644 | . . . 4 | |
4 | 2, 3 | bitri 249 | . . 3 |
5 | 1 | eleq2i 2535 | . . . . . 6 |
6 | elun 3644 | . . . . . 6 | |
7 | 5, 6 | bitri 249 | . . . . 5 |
8 | ssun1 3666 | . . . . . . . . 9 | |
9 | 8, 1 | sseqtr4i 3536 | . . . . . . . 8 |
10 | un0addcl.3 | . . . . . . . 8 | |
11 | 9, 10 | sseldi 3501 | . . . . . . 7 |
12 | 11 | expr 615 | . . . . . 6 |
13 | un0addcl.1 | . . . . . . . . . . 11 | |
14 | 13 | sselda 3503 | . . . . . . . . . 10 |
15 | 14 | addid2d 9802 | . . . . . . . . 9 |
16 | 9 | a1i 11 | . . . . . . . . . 10 |
17 | 16 | sselda 3503 | . . . . . . . . 9 |
18 | 15, 17 | eqeltrd 2545 | . . . . . . . 8 |
19 | elsni 4054 | . . . . . . . . . 10 | |
20 | 19 | oveq1d 6311 | . . . . . . . . 9 |
21 | 20 | eleq1d 2526 | . . . . . . . 8 |
22 | 18, 21 | syl5ibrcom 222 | . . . . . . 7 |
23 | 22 | impancom 440 | . . . . . 6 |
24 | 12, 23 | jaodan 785 | . . . . 5 |
25 | 7, 24 | sylan2b 475 | . . . 4 |
26 | 0cnd 9610 | . . . . . . . . . . 11 | |
27 | 26 | snssd 4175 | . . . . . . . . . 10 |
28 | 13, 27 | unssd 3679 | . . . . . . . . 9 |
29 | 1, 28 | syl5eqss 3547 | . . . . . . . 8 |
30 | 29 | sselda 3503 | . . . . . . 7 |
31 | 30 | addid1d 9801 | . . . . . 6 |
32 | simpr 461 | . . . . . 6 | |
33 | 31, 32 | eqeltrd 2545 | . . . . 5 |
34 | elsni 4054 | . . . . . . 7 | |
35 | 34 | oveq2d 6312 | . . . . . 6 |
36 | 35 | eleq1d 2526 | . . . . 5 |
37 | 33, 36 | syl5ibrcom 222 | . . . 4 |
38 | 25, 37 | jaod 380 | . . 3 |
39 | 4, 38 | syl5bi 217 | . 2 |
40 | 39 | impr 619 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 \/ wo 368
/\ wa 369 = wceq 1395 e. wcel 1818
u. cun 3473 C_ wss 3475 { csn 4029
(class class class)co 6296 cc 9511 0 cc0 9513 caddc 9516 |
This theorem is referenced by: nn0addcl 10856 plyaddlem 22612 plymullem 22613 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-po 4805 df-so 4806 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-ov 6299 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-pnf 9651 df-mnf 9652 df-ltxr 9654 |
Copyright terms: Public domain | W3C validator |