MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  un4 Unicode version

Theorem un4 3663
Description: A rearrangement of the union of 4 classes. (Contributed by NM, 12-Aug-2004.)
Assertion
Ref Expression
un4

Proof of Theorem un4
StepHypRef Expression
1 un12 3661 . . 3
21uneq2i 3654 . 2
3 unass 3660 . 2
4 unass 3660 . 2
52, 3, 43eqtr4i 2496 1
Colors of variables: wff setvar class
Syntax hints:  =wceq 1395  u.cun 3473
This theorem is referenced by:  unundi  3664  unundir  3665  xpun  5062  resasplit  5760  ex-pw  25150
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-v 3111  df-un 3480
  Copyright terms: Public domain W3C validator