![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > unass | Unicode version |
Description: Associative law for union of classes. Exercise 8 of [TakeutiZaring] p. 17. (Contributed by NM, 3-May-1994.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
unass |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elun 3644 | . . 3 | |
2 | elun 3644 | . . . 4 | |
3 | 2 | orbi2i 519 | . . 3 |
4 | elun 3644 | . . . . 5 | |
5 | 4 | orbi1i 520 | . . . 4 |
6 | orass 524 | . . . 4 | |
7 | 5, 6 | bitr2i 250 | . . 3 |
8 | 1, 3, 7 | 3bitrri 272 | . 2 |
9 | 8 | uneqri 3645 | 1 |
Colors of variables: wff setvar class |
Syntax hints: \/ wo 368 = wceq 1395
e. wcel 1818 u. cun 3473 |
This theorem is referenced by: un12 3661 un23 3662 un4 3663 dfif5 3957 qdass 4129 qdassr 4130 ssunpr 4192 oarec 7230 domunfican 7813 cdaassen 8583 prunioo 11678 ioojoin 11680 fzosplitprm1 11919 s4prop 12863 strlemor2 14725 strlemor3 14726 phlstr 14778 prdsvalstr 14850 mreexexlem2d 15042 mreexexlem4d 15044 ordtbas 19693 reconnlem1 21331 lhop 22417 plyun0 22594 ex-un 25145 ex-pw 25150 subfacp1lem1 28623 fzosplitpr 32342 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-v 3111 df-un 3480 |
Copyright terms: Public domain | W3C validator |