![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > unblem1 | Unicode version |
Description: Lemma for unbnn 7796. After removing the successor of an element from an unbounded set of natural numbers, the intersection of the result belongs to the original unbounded set. (Contributed by NM, 3-Dec-2003.) |
Ref | Expression |
---|---|
unblem1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omsson 6704 | . . . . . 6 | |
2 | sstr 3511 | . . . . . 6 | |
3 | 1, 2 | mpan2 671 | . . . . 5 |
4 | 3 | ssdifssd 3641 | . . . 4 |
5 | 4 | ad2antrr 725 | . . 3 |
6 | ssel 3497 | . . . . . 6 | |
7 | peano2b 6716 | . . . . . 6 | |
8 | 6, 7 | syl6ib 226 | . . . . 5 |
9 | eleq1 2529 | . . . . . . . 8 | |
10 | 9 | rexbidv 2968 | . . . . . . 7 |
11 | 10 | rspccva 3209 | . . . . . 6 |
12 | ssel 3497 | . . . . . . . . . . 11 | |
13 | nnord 6708 | . . . . . . . . . . . 12 | |
14 | ordn2lp 4903 | . . . . . . . . . . . . . 14 | |
15 | imnan 422 | . . . . . . . . . . . . . 14 | |
16 | 14, 15 | sylibr 212 | . . . . . . . . . . . . 13 |
17 | 16 | con2d 115 | . . . . . . . . . . . 12 |
18 | 13, 17 | syl 16 | . . . . . . . . . . 11 |
19 | 12, 18 | syl6 33 | . . . . . . . . . 10 |
20 | 19 | imdistand 692 | . . . . . . . . 9 |
21 | eldif 3485 | . . . . . . . . . 10 | |
22 | ne0i 3790 | . . . . . . . . . 10 | |
23 | 21, 22 | sylbir 213 | . . . . . . . . 9 |
24 | 20, 23 | syl6 33 | . . . . . . . 8 |
25 | 24 | expd 436 | . . . . . . 7 |
26 | 25 | rexlimdv 2947 | . . . . . 6 |
27 | 11, 26 | syl5 32 | . . . . 5 |
28 | 8, 27 | sylan2d 482 | . . . 4 |
29 | 28 | impl 620 | . . 3 |
30 | onint 6630 | . . 3 | |
31 | 5, 29, 30 | syl2anc 661 | . 2 |
32 | 31 | eldifad 3487 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
/\ wa 369 = wceq 1395 e. wcel 1818
=/= wne 2652 A. wral 2807 E. wrex 2808
\ cdif 3472 C_ wss 3475 c0 3784 |^| cint 4286 Ord word 4882
con0 4883 suc csuc 4885 com 6700 |
This theorem is referenced by: unblem2 7793 unblem3 7794 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-br 4453 df-opab 4511 df-tr 4546 df-eprel 4796 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-om 6701 |
Copyright terms: Public domain | W3C validator |