![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > undi | Unicode version |
Description: Distributive law for union over intersection. Exercise 11 of [TakeutiZaring] p. 17. (Contributed by NM, 30-Sep-2002.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
undi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3686 | . . . 4 | |
2 | 1 | orbi2i 519 | . . 3 |
3 | ordi 864 | . . 3 | |
4 | elin 3686 | . . . 4 | |
5 | elun 3644 | . . . . 5 | |
6 | elun 3644 | . . . . 5 | |
7 | 5, 6 | anbi12i 697 | . . . 4 |
8 | 4, 7 | bitr2i 250 | . . 3 |
9 | 2, 3, 8 | 3bitri 271 | . 2 |
10 | 9 | uneqri 3645 | 1 |
Colors of variables: wff setvar class |
Syntax hints: \/ wo 368 /\ wa 369
= wceq 1395 e. wcel 1818 u. cun 3473
i^i cin 3474 |
This theorem is referenced by: undir 3746 dfif4 3956 dfif5 3957 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-v 3111 df-un 3480 df-in 3482 |
Copyright terms: Public domain | W3C validator |