![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > undom | Unicode version |
Description: Dominance law for union. Proposition 4.24(a) of [Mendelson] p. 257. (Contributed by NM, 3-Sep-2004.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
undom |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reldom 7542 | . . . . . . 7 | |
2 | 1 | brrelex2i 5046 | . . . . . 6 |
3 | domeng 7550 | . . . . . 6 | |
4 | 2, 3 | syl 16 | . . . . 5 |
5 | 4 | ibi 241 | . . . 4 |
6 | 1 | brrelexi 5045 | . . . . . . 7 |
7 | difss 3630 | . . . . . . 7 | |
8 | ssdomg 7581 | . . . . . . 7 | |
9 | 6, 7, 8 | mpisyl 18 | . . . . . 6 |
10 | domtr 7588 | . . . . . 6 | |
11 | 9, 10 | mpancom 669 | . . . . 5 |
12 | 1 | brrelex2i 5046 | . . . . . . 7 |
13 | domeng 7550 | . . . . . . 7 | |
14 | 12, 13 | syl 16 | . . . . . 6 |
15 | 14 | ibi 241 | . . . . 5 |
16 | 11, 15 | syl 16 | . . . 4 |
17 | 5, 16 | anim12i 566 | . . 3 |
18 | 17 | adantr 465 | . 2 |
19 | eeanv 1988 | . . 3 | |
20 | simprll 763 | . . . . . . 7 | |
21 | simprrl 765 | . . . . . . 7 | |
22 | disjdif 3900 | . . . . . . . 8 | |
23 | 22 | a1i 11 | . . . . . . 7 |
24 | ss2in 3724 | . . . . . . . . . 10 | |
25 | 24 | ad2ant2l 745 | . . . . . . . . 9 |
26 | 25 | adantl 466 | . . . . . . . 8 |
27 | simplr 755 | . . . . . . . 8 | |
28 | sseq0 3817 | . . . . . . . 8 | |
29 | 26, 27, 28 | syl2anc 661 | . . . . . . 7 |
30 | undif2 3904 | . . . . . . . 8 | |
31 | unen 7618 | . . . . . . . 8 | |
32 | 30, 31 | syl5eqbrr 4486 | . . . . . . 7 |
33 | 20, 21, 23, 29, 32 | syl22anc 1229 | . . . . . 6 |
34 | 2 | ad3antrrr 729 | . . . . . . . 8 |
35 | 1 | brrelex2i 5046 | . . . . . . . . 9 |
36 | 35 | ad3antlr 730 | . . . . . . . 8 |
37 | unexg 6601 | . . . . . . . 8 | |
38 | 34, 36, 37 | syl2anc 661 | . . . . . . 7 |
39 | unss12 3675 | . . . . . . . . 9 | |
40 | 39 | ad2ant2l 745 | . . . . . . . 8 |
41 | 40 | adantl 466 | . . . . . . 7 |
42 | ssdomg 7581 | . . . . . . 7 | |
43 | 38, 41, 42 | sylc 60 | . . . . . 6 |
44 | endomtr 7593 | . . . . . 6 | |
45 | 33, 43, 44 | syl2anc 661 | . . . . 5 |
46 | 45 | ex 434 | . . . 4 |
47 | 46 | exlimdvv 1725 | . . 3 |
48 | 19, 47 | syl5bir 218 | . 2 |
49 | 18, 48 | mpd 15 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 = wceq 1395 E. wex 1612
e. wcel 1818 cvv 3109
\ cdif 3472 u. cun 3473 i^i cin 3474
C_ wss 3475 c0 3784 class class class wbr 4452
cen 7533 cdom 7534 |
This theorem is referenced by: domunsncan 7637 domunsn 7687 sucdom2 7734 unxpdom2 7748 sucxpdom 7749 fodomfi 7819 uncdadom 8572 cdadom1 8587 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-en 7537 df-dom 7538 |
Copyright terms: Public domain | W3C validator |