![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > uneqin | Unicode version |
Description: Equality of union and intersection implies equality of their arguments. (Contributed by NM, 16-Apr-2006.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
uneqin |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqimss 3555 | . . . 4 | |
2 | unss 3677 | . . . . 5 | |
3 | ssin 3719 | . . . . . . 7 | |
4 | sstr 3511 | . . . . . . 7 | |
5 | 3, 4 | sylbir 213 | . . . . . 6 |
6 | ssin 3719 | . . . . . . 7 | |
7 | simpl 457 | . . . . . . 7 | |
8 | 6, 7 | sylbir 213 | . . . . . 6 |
9 | 5, 8 | anim12i 566 | . . . . 5 |
10 | 2, 9 | sylbir 213 | . . . 4 |
11 | 1, 10 | syl 16 | . . 3 |
12 | eqss 3518 | . . 3 | |
13 | 11, 12 | sylibr 212 | . 2 |
14 | unidm 3646 | . . . 4 | |
15 | inidm 3706 | . . . 4 | |
16 | 14, 15 | eqtr4i 2489 | . . 3 |
17 | uneq2 3651 | . . 3 | |
18 | ineq2 3693 | . . 3 | |
19 | 16, 17, 18 | 3eqtr3a 2522 | . 2 |
20 | 13, 19 | impbii 188 | 1 |
Colors of variables: wff setvar class |
Syntax hints: <-> wb 184 /\ wa 369
= wceq 1395 u. cun 3473 i^i cin 3474
C_ wss 3475 |
This theorem is referenced by: uniintsn 4324 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-v 3111 df-un 3480 df-in 3482 df-ss 3489 |
Copyright terms: Public domain | W3C validator |