![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > uni0 | Unicode version |
Description: The union of the empty set is the empty set. Theorem 8.7 of [Quine] p. 54. (Reproved without relying on ax-nul 4581 by Eric Schmidt.) (Contributed by NM, 16-Sep-1993.) (Revised by Eric Schmidt, 4-Apr-2007.) |
Ref | Expression |
---|---|
uni0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ss 3814 | . 2 | |
2 | uni0b 4274 | . 2 | |
3 | 1, 2 | mpbir 209 | 1 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1395 C_ wss 3475
c0 3784 { csn 4029 U. cuni 4249 |
This theorem is referenced by: csbuni 4277 uniintsn 4324 iununi 4415 unisn2 4588 unizlim 4999 opswap 5500 unixp0 5546 unixpid 5547 iotanul 5571 funfv 5940 dffv2 5946 1stval 6802 2ndval 6803 1stnpr 6804 2ndnpr 6805 1st0 6806 2nd0 6807 1st2val 6826 2nd2val 6827 brtpos0 6981 tpostpos 6994 nnunifi 7791 supval2 7935 infeq5 8075 rankuni 8302 rankxplim3 8320 iunfictbso 8516 cflim2 8664 fin1a2lem11 8811 itunisuc 8820 itunitc 8822 ttukeylem4 8913 incexclem 13648 arwval 15370 dprdsn 17083 zrhval 18545 0opn 19413 indistopon 19502 mretopd 19593 hauscmplem 19906 cmpfi 19908 comppfsc 20033 alexsublem 20544 alexsubALTlem2 20548 ptcmplem2 20553 lebnumlem3 21463 locfinref 27844 prsiga 28131 dya2iocuni 28254 unisnif 29575 limsucncmpi 29910 heicant 30049 ovoliunnfl 30056 voliunnfl 30058 volsupnfl 30059 mbfresfi 30061 stoweidlem35 31817 stoweidlem39 31821 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-v 3111 df-dif 3478 df-in 3482 df-ss 3489 df-nul 3785 df-sn 4030 df-uni 4250 |
Copyright terms: Public domain | W3C validator |