![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > uni0b | Unicode version |
Description: The union of a set is empty iff the set is included in the singleton of the empty set. (Contributed by NM, 12-Sep-2004.) |
Ref | Expression |
---|---|
uni0b |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elsn 4043 | . . 3 | |
2 | 1 | ralbii 2888 | . 2 |
3 | dfss3 3493 | . 2 | |
4 | neq0 3795 | . . . 4 | |
5 | rexcom4 3129 | . . . . 5 | |
6 | neq0 3795 | . . . . . 6 | |
7 | 6 | rexbii 2959 | . . . . 5 |
8 | eluni2 4253 | . . . . . 6 | |
9 | 8 | exbii 1667 | . . . . 5 |
10 | 5, 7, 9 | 3bitr4ri 278 | . . . 4 |
11 | rexnal 2905 | . . . 4 | |
12 | 4, 10, 11 | 3bitri 271 | . . 3 |
13 | 12 | con4bii 297 | . 2 |
14 | 2, 3, 13 | 3bitr4ri 278 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 <-> wb 184
= wceq 1395 E. wex 1612 e. wcel 1818
A. wral 2807 E. wrex 2808 C_ wss 3475
c0 3784 { csn 4029 U. cuni 4249 |
This theorem is referenced by: uni0c 4275 uni0 4276 fin1a2lem11 8811 zornn0g 8906 0top 19485 filcon 20384 alexsubALTlem2 20548 ordcmp 29912 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-v 3111 df-dif 3478 df-in 3482 df-ss 3489 df-nul 3785 df-sn 4030 df-uni 4250 |
Copyright terms: Public domain | W3C validator |