MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unidif Unicode version

Theorem unidif 4283
Description: If the difference A\ contains the largest members of , then the union of the difference is the union of . (Contributed by NM, 22-Mar-2004.)
Assertion
Ref Expression
unidif
Distinct variable groups:   , ,   , ,

Proof of Theorem unidif
StepHypRef Expression
1 uniss2 4282 . . 3
2 difss 3630 . . . 4
32unissi 4272 . . 3
41, 3jctil 537 . 2
5 eqss 3518 . 2
64, 5sylibr 212 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  /\wa 369  =wceq 1395  A.wral 2807  E.wrex 2808  \cdif 3472  C_wss 3475  U.cuni 4249
This theorem is referenced by:  ordunidif  4931
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ral 2812  df-rex 2813  df-v 3111  df-dif 3478  df-in 3482  df-ss 3489  df-uni 4250
  Copyright terms: Public domain W3C validator