![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > unielxp | Unicode version |
Description: The membership relation for a Cartesian product is inherited by union. (Contributed by NM, 16-Sep-2006.) |
Ref | Expression |
---|---|
unielxp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxp7 6833 | . 2 | |
2 | elvvuni 5065 | . . . 4 | |
3 | 2 | adantr 465 | . . 3 |
4 | simprl 756 | . . . . . 6 | |
5 | eleq2 2530 | . . . . . . . 8 | |
6 | eleq1 2529 | . . . . . . . . 9 | |
7 | fveq2 5871 | . . . . . . . . . . 11 | |
8 | 7 | eleq1d 2526 | . . . . . . . . . 10 |
9 | fveq2 5871 | . . . . . . . . . . 11 | |
10 | 9 | eleq1d 2526 | . . . . . . . . . 10 |
11 | 8, 10 | anbi12d 710 | . . . . . . . . 9 |
12 | 6, 11 | anbi12d 710 | . . . . . . . 8 |
13 | 5, 12 | anbi12d 710 | . . . . . . 7 |
14 | 13 | spcegv 3195 | . . . . . 6 |
15 | 4, 14 | mpcom 36 | . . . . 5 |
16 | eluniab 4260 | . . . . 5 | |
17 | 15, 16 | sylibr 212 | . . . 4 |
18 | xp2 6835 | . . . . . 6 | |
19 | df-rab 2816 | . . . . . 6 | |
20 | 18, 19 | eqtri 2486 | . . . . 5 |
21 | 20 | unieqi 4258 | . . . 4 |
22 | 17, 21 | syl6eleqr 2556 | . . 3 |
23 | 3, 22 | mpancom 669 | . 2 |
24 | 1, 23 | sylbi 195 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
= wceq 1395 E. wex 1612 e. wcel 1818
{ cab 2442 { crab 2811 cvv 3109
U. cuni 4249 X. cxp 5002 ` cfv 5593
c1st 6798
c2nd 6799 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-iota 5556 df-fun 5595 df-fv 5601 df-1st 6800 df-2nd 6801 |
Copyright terms: Public domain | W3C validator |