![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > uniex2 | Unicode version |
Description: The Axiom of Union using the standard abbreviation for union. Given any set , its union exists. (Contributed by NM, 4-Jun-2006.) |
Ref | Expression |
---|---|
uniex2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zfun 6593 | . . . 4 | |
2 | eluni 4252 | . . . . . . 7 | |
3 | 2 | imbi1i 325 | . . . . . 6 |
4 | 3 | albii 1640 | . . . . 5 |
5 | 4 | exbii 1667 | . . . 4 |
6 | 1, 5 | mpbir 209 | . . 3 |
7 | 6 | bm1.3ii 4576 | . 2 |
8 | dfcleq 2450 | . . 3 | |
9 | 8 | exbii 1667 | . 2 |
10 | 7, 9 | mpbir 209 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 A. wal 1393 = wceq 1395
E. wex 1612 e. wcel 1818 U. cuni 4249 |
This theorem is referenced by: uniex 6596 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-v 3111 df-uni 4250 |
Copyright terms: Public domain | W3C validator |