![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > uniin | Unicode version |
Description: The class union of the intersection of two classes. Exercise 4.12(n) of [Mendelson] p. 235. See uniinqs 7410 for a condition where equality holds. (Contributed by NM, 4-Dec-2003.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
Ref | Expression |
---|---|
uniin |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.40 1679 | . . . 4 | |
2 | elin 3686 | . . . . . . 7 | |
3 | 2 | anbi2i 694 | . . . . . 6 |
4 | anandi 828 | . . . . . 6 | |
5 | 3, 4 | bitri 249 | . . . . 5 |
6 | 5 | exbii 1667 | . . . 4 |
7 | eluni 4252 | . . . . 5 | |
8 | eluni 4252 | . . . . 5 | |
9 | 7, 8 | anbi12i 697 | . . . 4 |
10 | 1, 6, 9 | 3imtr4i 266 | . . 3 |
11 | eluni 4252 | . . 3 | |
12 | elin 3686 | . . 3 | |
13 | 10, 11, 12 | 3imtr4i 266 | . 2 |
14 | 13 | ssriv 3507 | 1 |
Colors of variables: wff setvar class |
Syntax hints: /\ wa 369 E. wex 1612
e. wcel 1818 i^i cin 3474 C_ wss 3475
U. cuni 4249 |
This theorem is referenced by: uniinqs 7410 psss 15844 tgval 19456 mapdunirnN 37377 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-v 3111 df-in 3482 df-ss 3489 df-uni 4250 |
Copyright terms: Public domain | W3C validator |