![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > uniinqs | Unicode version |
Description: Class union distributes over the intersection of two subclasses of a quotient space. Compare uniin 4269. (Contributed by FL, 25-May-2007.) (Proof shortened by Mario Carneiro, 11-Jul-2014.) |
Ref | Expression |
---|---|
uniinqs.1 |
Ref | Expression |
---|---|
uniinqs |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniin 4269 | . . 3 | |
2 | 1 | a1i 11 | . 2 |
3 | eluni2 4253 | . . . . . 6 | |
4 | eluni2 4253 | . . . . . 6 | |
5 | 3, 4 | anbi12i 697 | . . . . 5 |
6 | elin 3686 | . . . . 5 | |
7 | reeanv 3025 | . . . . 5 | |
8 | 5, 6, 7 | 3bitr4i 277 | . . . 4 |
9 | simp3l 1024 | . . . . . . 7 | |
10 | simp2l 1022 | . . . . . . . 8 | |
11 | inelcm 3881 | . . . . . . . . . . 11 | |
12 | 11 | 3ad2ant3 1019 | . . . . . . . . . 10 |
13 | uniinqs.1 | . . . . . . . . . . . . . 14 | |
14 | 13 | a1i 11 | . . . . . . . . . . . . 13 |
15 | simp1l 1020 | . . . . . . . . . . . . . 14 | |
16 | 15, 10 | sseldd 3504 | . . . . . . . . . . . . 13 |
17 | simp1r 1021 | . . . . . . . . . . . . . 14 | |
18 | simp2r 1023 | . . . . . . . . . . . . . 14 | |
19 | 17, 18 | sseldd 3504 | . . . . . . . . . . . . 13 |
20 | 14, 16, 19 | qsdisj 7407 | . . . . . . . . . . . 12 |
21 | 20 | ord 377 | . . . . . . . . . . 11 |
22 | 21 | necon1ad 2673 | . . . . . . . . . 10 |
23 | 12, 22 | mpd 15 | . . . . . . . . 9 |
24 | 23, 18 | eqeltrd 2545 | . . . . . . . 8 |
25 | 10, 24 | elind 3687 | . . . . . . 7 |
26 | elunii 4254 | . . . . . . 7 | |
27 | 9, 25, 26 | syl2anc 661 | . . . . . 6 |
28 | 27 | 3expia 1198 | . . . . 5 |
29 | 28 | rexlimdvva 2956 | . . . 4 |
30 | 8, 29 | syl5bi 217 | . . 3 |
31 | 30 | ssrdv 3509 | . 2 |
32 | 2, 31 | eqssd 3520 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
/\ w3a 973 = wceq 1395 e. wcel 1818
=/= wne 2652 E. wrex 2808 i^i cin 3474
C_ wss 3475 c0 3784 U. cuni 4249 Er wer 7327
/. cqs 7329 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-er 7330 df-ec 7332 df-qs 7336 |
Copyright terms: Public domain | W3C validator |