![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > unineq | Unicode version |
Description: Infer equality from equalities of union and intersection. Exercise 20 of [Enderton] p. 32 and its converse. (Contributed by NM, 10-Aug-2004.) |
Ref | Expression |
---|---|
unineq |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 2530 | . . . . . . 7 | |
2 | elin 3686 | . . . . . . 7 | |
3 | elin 3686 | . . . . . . 7 | |
4 | 1, 2, 3 | 3bitr3g 287 | . . . . . 6 |
5 | iba 503 | . . . . . . 7 | |
6 | iba 503 | . . . . . . 7 | |
7 | 5, 6 | bibi12d 321 | . . . . . 6 |
8 | 4, 7 | syl5ibr 221 | . . . . 5 |
9 | 8 | adantld 467 | . . . 4 |
10 | uncom 3647 | . . . . . . . . 9 | |
11 | uncom 3647 | . . . . . . . . 9 | |
12 | 10, 11 | eqeq12i 2477 | . . . . . . . 8 |
13 | eleq2 2530 | . . . . . . . 8 | |
14 | 12, 13 | sylbi 195 | . . . . . . 7 |
15 | elun 3644 | . . . . . . 7 | |
16 | elun 3644 | . . . . . . 7 | |
17 | 14, 15, 16 | 3bitr3g 287 | . . . . . 6 |
18 | biorf 405 | . . . . . . 7 | |
19 | biorf 405 | . . . . . . 7 | |
20 | 18, 19 | bibi12d 321 | . . . . . 6 |
21 | 17, 20 | syl5ibr 221 | . . . . 5 |
22 | 21 | adantrd 468 | . . . 4 |
23 | 9, 22 | pm2.61i 164 | . . 3 |
24 | 23 | eqrdv 2454 | . 2 |
25 | uneq1 3650 | . . 3 | |
26 | ineq1 3692 | . . 3 | |
27 | 25, 26 | jca 532 | . 2 |
28 | 24, 27 | impbii 188 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 \/ wo 368 /\ wa 369
= wceq 1395 e. wcel 1818 u. cun 3473
i^i cin 3474 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-v 3111 df-un 3480 df-in 3482 |
Copyright terms: Public domain | W3C validator |