![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > uniopel | Unicode version |
Description: Ordered pair membership is inherited by class union. (Contributed by NM, 13-May-2008.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
opthw.1 | |
opthw.2 |
Ref | Expression |
---|---|
uniopel |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opthw.1 | . . . 4 | |
2 | opthw.2 | . . . 4 | |
3 | 1, 2 | uniop 4755 | . . 3 |
4 | 1, 2 | opi2 4720 | . . 3 |
5 | 3, 4 | eqeltri 2541 | . 2 |
6 | elssuni 4279 | . . 3 | |
7 | 6 | sseld 3502 | . 2 |
8 | 5, 7 | mpi 17 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 e. wcel 1818
cvv 3109
{ cpr 4031 <. cop 4035 U. cuni 4249 |
This theorem is referenced by: dmrnssfld 5266 unielrel 5537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-rex 2813 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 |
Copyright terms: Public domain | W3C validator |