MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unir1 Unicode version

Theorem unir1 8252
Description: The cumulative hierarchy of sets covers the universe. Proposition 4.45 (b) to (a) of [Mendelson] p. 281. (Contributed by NM, 27-Sep-2004.) (Revised by Mario Carneiro, 8-Jun-2013.)
Assertion
Ref Expression
unir1

Proof of Theorem unir1
StepHypRef Expression
1 setind 8186 . 2
2 vex 3112 . . . 4
32r1elss 8245 . . 3
43biimpri 206 . 2
51, 4mpg 1620 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  =wceq 1395  e.wcel 1818   cvv 3109  C_wss 3475  U.cuni 4249   con0 4883  "cima 5007   cr1 8201
This theorem is referenced by:  jech9.3  8253  rankwflem  8254  rankval  8255  rankr1g  8271  rankid  8272  ssrankr1  8274  rankel  8278  rankval3  8279  rankpw  8282  rankss  8288  ranksn  8293  rankuni2  8294  rankun  8295  rankpr  8296  rankop  8297  r1rankid  8298  rankeq0  8300  rankr1b  8303  dfac12a  8549  hsmex2  8834  grutsk  9221
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-8 1820  ax-9 1822  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435  ax-rep 4563  ax-sep 4573  ax-nul 4581  ax-pow 4630  ax-pr 4691  ax-un 6592  ax-reg 8039  ax-inf2 8079
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-eu 2286  df-mo 2287  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-reu 2814  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3435  df-dif 3478  df-un 3480  df-in 3482  df-ss 3489  df-pss 3491  df-nul 3785  df-if 3942  df-pw 4014  df-sn 4030  df-pr 4032  df-tp 4034  df-op 4036  df-uni 4250  df-int 4287  df-iun 4332  df-br 4453  df-opab 4511  df-mpt 4512  df-tr 4546  df-eprel 4796  df-id 4800  df-po 4805  df-so 4806  df-fr 4843  df-we 4845  df-ord 4886  df-on 4887  df-lim 4888  df-suc 4889  df-xp 5010  df-rel 5011  df-cnv 5012  df-co 5013  df-dm 5014  df-rn 5015  df-res 5016  df-ima 5017  df-iota 5556  df-fun 5595  df-fn 5596  df-f 5597  df-f1 5598  df-fo 5599  df-f1o 5600  df-fv 5601  df-om 6701  df-recs 7061  df-rdg 7095  df-r1 8203
  Copyright terms: Public domain W3C validator