![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > uniss | Unicode version |
Description: Subclass relationship for class union. Theorem 61 of [Suppes] p. 39. (Contributed by NM, 22-Mar-1998.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
Ref | Expression |
---|---|
uniss |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3497 | . . . . 5 | |
2 | 1 | anim2d 565 | . . . 4 |
3 | 2 | eximdv 1710 | . . 3 |
4 | eluni 4252 | . . 3 | |
5 | eluni 4252 | . . 3 | |
6 | 3, 4, 5 | 3imtr4g 270 | . 2 |
7 | 6 | ssrdv 3509 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
E. wex 1612 e. wcel 1818 C_ wss 3475
U. cuni 4249 |
This theorem is referenced by: unissi 4272 unissd 4273 intssuni2 4312 uniintsn 4324 relfld 5538 dffv2 5946 trcl 8180 cflm 8651 coflim 8662 cfslbn 8668 fin23lem41 8753 fin1a2lem12 8812 tskuni 9182 prdsval 14852 prdsbas 14854 prdsplusg 14855 prdsmulr 14856 prdsvsca 14857 prdshom 14864 mrcssv 15011 catcfuccl 15436 catcxpccl 15476 mrelatlub 15816 mreclatBAD 15817 dprdres 17075 dmdprdsplit2lem 17094 tgcl 19471 distop 19497 fctop 19505 cctop 19507 neiptoptop 19632 cmpcld 19902 uncmp 19903 cmpfi 19908 bwthOLD 19911 comppfsc 20033 kgentopon 20039 txcmplem2 20143 filcon 20384 alexsubALTlem3 20549 alexsubALT 20551 ptcmplem3 20554 dyadmbllem 22008 shsupcl 26256 hsupss 26259 shatomistici 27280 cvmliftlem15 28743 frrlem5c 29393 filnetlem3 30198 heiborlem1 30307 lssats 34737 lpssat 34738 lssatle 34740 lssat 34741 dicval 36903 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-v 3111 df-in 3482 df-ss 3489 df-uni 4250 |
Copyright terms: Public domain | W3C validator |