MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unissi Unicode version

Theorem unissi 4272
Description: Subclass relationship for subclass union. Inference form of uniss 4270. (Contributed by David Moews, 1-May-2017.)
Hypothesis
Ref Expression
unissi.1
Assertion
Ref Expression
unissi

Proof of Theorem unissi
StepHypRef Expression
1 unissi.1 . 2
2 uniss 4270 . 2
31, 2ax-mp 5 1
Colors of variables: wff setvar class
Syntax hints:  C_wss 3475  U.cuni 4249
This theorem is referenced by:  unidif  4283  unixpss  5123  riotassuniOLD  6294  unifpw  7843  fiuni  7908  rankuni  8302  fin23lem29  8742  fin23lem30  8743  fin1a2lem12  8812  prdsds  14861  psss  15844  tgval2  19457  eltg4i  19461  unitgOLD  19469  ntrss2  19558  isopn3  19567  mretopd  19593  ordtbas  19693  cmpcov2  19890  tgcmp  19901  comppfsc  20033  alexsublem  20544  alexsubALTlem3  20549  alexsubALTlem4  20550  cldsubg  20609  bndth  21458  uniioombllem4  21995  uniioombllem5  21996  cvmscld  28718  mblfinlem3  30053  mblfinlem4  30054  ismblfin  30055  mbfresfi  30061  fnessref  30175  cover2  30204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-v 3111  df-in 3482  df-ss 3489  df-uni 4250
  Copyright terms: Public domain W3C validator