![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > uniuni | Unicode version |
Description: Expression for double union that moves union into a class builder. (Contributed by FL, 28-May-2007.) |
Ref | Expression |
---|---|
uniuni |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluni 4252 | . . . . . 6 | |
2 | 1 | anbi2i 694 | . . . . 5 |
3 | 2 | exbii 1667 | . . . 4 |
4 | 19.42v 1775 | . . . . . . 7 | |
5 | 4 | bicomi 202 | . . . . . 6 |
6 | 5 | exbii 1667 | . . . . 5 |
7 | excom 1849 | . . . . . 6 | |
8 | anass 649 | . . . . . . . 8 | |
9 | ancom 450 | . . . . . . . 8 | |
10 | 8, 9 | bitr3i 251 | . . . . . . 7 |
11 | 10 | 2exbii 1668 | . . . . . 6 |
12 | exdistr 1776 | . . . . . 6 | |
13 | 7, 11, 12 | 3bitri 271 | . . . . 5 |
14 | eluni 4252 | . . . . . . . 8 | |
15 | 14 | bicomi 202 | . . . . . . 7 |
16 | 15 | anbi2i 694 | . . . . . 6 |
17 | 16 | exbii 1667 | . . . . 5 |
18 | 6, 13, 17 | 3bitri 271 | . . . 4 |
19 | vex 3112 | . . . . . . . . . . 11 | |
20 | 19 | uniex 6596 | . . . . . . . . . 10 |
21 | eleq2 2530 | . . . . . . . . . 10 | |
22 | 20, 21 | ceqsexv 3146 | . . . . . . . . 9 |
23 | exancom 1671 | . . . . . . . . 9 | |
24 | 22, 23 | bitr3i 251 | . . . . . . . 8 |
25 | 24 | anbi2i 694 | . . . . . . 7 |
26 | 19.42v 1775 | . . . . . . 7 | |
27 | ancom 450 | . . . . . . . . 9 | |
28 | anass 649 | . . . . . . . . 9 | |
29 | 27, 28 | bitri 249 | . . . . . . . 8 |
30 | 29 | exbii 1667 | . . . . . . 7 |
31 | 25, 26, 30 | 3bitr2i 273 | . . . . . 6 |
32 | 31 | exbii 1667 | . . . . 5 |
33 | excom 1849 | . . . . 5 | |
34 | exdistr 1776 | . . . . . 6 | |
35 | vex 3112 | . . . . . . . . . 10 | |
36 | eqeq1 2461 | . . . . . . . . . . . 12 | |
37 | 36 | anbi1d 704 | . . . . . . . . . . 11 |
38 | 37 | exbidv 1714 | . . . . . . . . . 10 |
39 | 35, 38 | elab 3246 | . . . . . . . . 9 |
40 | 39 | bicomi 202 | . . . . . . . 8 |
41 | 40 | anbi2i 694 | . . . . . . 7 |
42 | 41 | exbii 1667 | . . . . . 6 |
43 | 34, 42 | bitri 249 | . . . . 5 |
44 | 32, 33, 43 | 3bitri 271 | . . . 4 |
45 | 3, 18, 44 | 3bitri 271 | . . 3 |
46 | 45 | abbii 2591 | . 2 |
47 | df-uni 4250 | . 2 | |
48 | df-uni 4250 | . 2 | |
49 | 46, 47, 48 | 3eqtr4i 2496 | 1 |
Colors of variables: wff setvar class |
Syntax hints: /\ wa 369 = wceq 1395
E. wex 1612 e. wcel 1818 { cab 2442
U. cuni 4249 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-rex 2813 df-v 3111 df-uni 4250 |
Copyright terms: Public domain | W3C validator |