MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unizlim Unicode version

Theorem unizlim 4999
Description: An ordinal equal to its own union is either zero or a limit ordinal. (Contributed by NM, 1-Oct-2003.)
Assertion
Ref Expression
unizlim

Proof of Theorem unizlim
StepHypRef Expression
1 df-ne 2654 . . . . . . 7
2 df-lim 4888 . . . . . . . . 9
32biimpri 206 . . . . . . . 8
433exp 1195 . . . . . . 7
51, 4syl5bir 218 . . . . . 6
65com23 78 . . . . 5
76imp 429 . . . 4
87orrd 378 . . 3
98ex 434 . 2
10 uni0 4276 . . . . 5
1110eqcomi 2470 . . . 4
12 id 22 . . . 4
13 unieq 4257 . . . 4
1411, 12, 133eqtr4a 2524 . . 3
15 limuni 4943 . . 3
1614, 15jaoi 379 . 2
179, 16impbid1 203 1
Colors of variables: wff setvar class
Syntax hints:  -.wn 3  ->wi 4  <->wb 184  \/wo 368  /\wa 369  /\w3a 973  =wceq 1395  =/=wne 2652   c0 3784  U.cuni 4249  Ordword 4882  Limwlim 4884
This theorem is referenced by:  ordzsl  6680  oeeulem  7269  cantnfp1lem2  8119  cantnflem1  8129  cantnfp1lem2OLD  8145  cantnflem1OLD  8152  cnfcom2lem  8166  cnfcom2lemOLD  8174  ordcmp  29912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-v 3111  df-dif 3478  df-in 3482  df-ss 3489  df-nul 3785  df-sn 4030  df-uni 4250  df-lim 4888
  Copyright terms: Public domain W3C validator