![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > unizlim | Unicode version |
Description: An ordinal equal to its own union is either zero or a limit ordinal. (Contributed by NM, 1-Oct-2003.) |
Ref | Expression |
---|---|
unizlim |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ne 2654 | . . . . . . 7 | |
2 | df-lim 4888 | . . . . . . . . 9 | |
3 | 2 | biimpri 206 | . . . . . . . 8 |
4 | 3 | 3exp 1195 | . . . . . . 7 |
5 | 1, 4 | syl5bir 218 | . . . . . 6 |
6 | 5 | com23 78 | . . . . 5 |
7 | 6 | imp 429 | . . . 4 |
8 | 7 | orrd 378 | . . 3 |
9 | 8 | ex 434 | . 2 |
10 | uni0 4276 | . . . . 5 | |
11 | 10 | eqcomi 2470 | . . . 4 |
12 | id 22 | . . . 4 | |
13 | unieq 4257 | . . . 4 | |
14 | 11, 12, 13 | 3eqtr4a 2524 | . . 3 |
15 | limuni 4943 | . . 3 | |
16 | 14, 15 | jaoi 379 | . 2 |
17 | 9, 16 | impbid1 203 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 \/ wo 368 /\ wa 369
/\ w3a 973 = wceq 1395 =/= wne 2652
c0 3784 U. cuni 4249 Ord word 4882
Lim wlim 4884 |
This theorem is referenced by: ordzsl 6680 oeeulem 7269 cantnfp1lem2 8119 cantnflem1 8129 cantnfp1lem2OLD 8145 cantnflem1OLD 8152 cnfcom2lem 8166 cnfcom2lemOLD 8174 ordcmp 29912 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-v 3111 df-dif 3478 df-in 3482 df-ss 3489 df-nul 3785 df-sn 4030 df-uni 4250 df-lim 4888 |
Copyright terms: Public domain | W3C validator |