![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > unssad | Unicode version |
Description: If is contained in , so is . One-way deduction form of unss 3677. Partial converse of unssd 3679. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
unssad.1 |
Ref | Expression |
---|---|
unssad |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unssad.1 | . . 3 | |
2 | unss 3677 | . . 3 | |
3 | 1, 2 | sylibr 212 | . 2 |
4 | 3 | simpld 459 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
u. cun 3473 C_ wss 3475 |
This theorem is referenced by: ersym 7342 findcard2d 7782 finsschain 7847 r0weon 8411 ackbij1lem16 8636 wunex2 9137 sumsplit 13583 fsumabs 13615 fsumiun 13635 mrieqvlemd 15026 yonedalem1 15541 yonedalem21 15542 yonedalem22 15547 yonffthlem 15551 lsmsp 17732 mplcoe1 18127 mdetunilem9 19122 ordtbas 19693 isufil2 20409 ufileu 20420 filufint 20421 fmfnfm 20459 flimclslem 20485 fclsfnflim 20528 flimfnfcls 20529 imasdsf1olem 20876 mbfeqalem 22049 limcdif 22280 jensenlem1 23316 jensenlem2 23317 jensen 23318 gsumvsca1 27773 gsumvsca2 27774 ordtconlem1 27906 ssmcls 28927 mclsppslem 28943 rngunsnply 31122 dvnprodlem1 31743 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-v 3111 df-un 3480 df-in 3482 df-ss 3489 |
Copyright terms: Public domain | W3C validator |