MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unssad Unicode version

Theorem unssad 3680
Description: If is contained in , so is . One-way deduction form of unss 3677. Partial converse of unssd 3679. (Contributed by David Moews, 1-May-2017.)
Hypothesis
Ref Expression
unssad.1
Assertion
Ref Expression
unssad

Proof of Theorem unssad
StepHypRef Expression
1 unssad.1 . . 3
2 unss 3677 . . 3
31, 2sylibr 212 . 2
43simpld 459 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  /\wa 369  u.cun 3473  C_wss 3475
This theorem is referenced by:  ersym  7342  findcard2d  7782  finsschain  7847  r0weon  8411  ackbij1lem16  8636  wunex2  9137  sumsplit  13583  fsumabs  13615  fsumiun  13635  mrieqvlemd  15026  yonedalem1  15541  yonedalem21  15542  yonedalem22  15547  yonffthlem  15551  lsmsp  17732  mplcoe1  18127  mdetunilem9  19122  ordtbas  19693  isufil2  20409  ufileu  20420  filufint  20421  fmfnfm  20459  flimclslem  20485  fclsfnflim  20528  flimfnfcls  20529  imasdsf1olem  20876  mbfeqalem  22049  limcdif  22280  jensenlem1  23316  jensenlem2  23317  jensen  23318  gsumvsca1  27773  gsumvsca2  27774  ordtconlem1  27906  ssmcls  28927  mclsppslem  28943  rngunsnply  31122  dvnprodlem1  31743
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-v 3111  df-un 3480  df-in 3482  df-ss 3489
  Copyright terms: Public domain W3C validator