MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unssbd Unicode version

Theorem unssbd 3681
Description: If is contained in , so is . One-way deduction form of unss 3677. Partial converse of unssd 3679. (Contributed by David Moews, 1-May-2017.)
Hypothesis
Ref Expression
unssad.1
Assertion
Ref Expression
unssbd

Proof of Theorem unssbd
StepHypRef Expression
1 unssad.1 . . 3
2 unss 3677 . . 3
31, 2sylibr 212 . 2
43simprd 463 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  /\wa 369  u.cun 3473  C_wss 3475
This theorem is referenced by:  eldifpw  6612  ertr  7345  finsschain  7847  r0weon  8411  ackbij1lem16  8636  wunfi  9120  wunex2  9137  hashf1lem2  12505  sumsplit  13583  fsum2dlem  13585  fsumabs  13615  fsumrlim  13625  fsumo1  13626  fsumiun  13635  fprod2dlem  13784  mreexexlem3d  15043  yonedalem1  15541  yonedalem21  15542  yonedalem3a  15543  yonedalem4c  15546  yonedalem22  15547  yonedalem3b  15548  yonedainv  15550  yonffthlem  15551  ablfac1eulem  17123  lsmsp  17732  lsppratlem3  17795  mplcoe1  18127  mdetunilem9  19122  filufint  20421  fmfnfmlem4  20458  hausflim  20482  fclsfnflim  20528  fsumcn  21374  mbfeqalem  22049  itgfsum  22233  jensenlem1  23316  jensenlem2  23317  gsumvsca1  27773  gsumvsca2  27774  ordtconlem1  27906  vhmcls  28926  mclsppslem  28943  rngunsnply  31122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-v 3111  df-un 3480  df-in 3482  df-ss 3489
  Copyright terms: Public domain W3C validator