![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > unssbd | Unicode version |
Description: If is contained in , so is . One-way deduction form of unss 3677. Partial converse of unssd 3679. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
unssad.1 |
Ref | Expression |
---|---|
unssbd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unssad.1 | . . 3 | |
2 | unss 3677 | . . 3 | |
3 | 1, 2 | sylibr 212 | . 2 |
4 | 3 | simprd 463 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
u. cun 3473 C_ wss 3475 |
This theorem is referenced by: eldifpw 6612 ertr 7345 finsschain 7847 r0weon 8411 ackbij1lem16 8636 wunfi 9120 wunex2 9137 hashf1lem2 12505 sumsplit 13583 fsum2dlem 13585 fsumabs 13615 fsumrlim 13625 fsumo1 13626 fsumiun 13635 fprod2dlem 13784 mreexexlem3d 15043 yonedalem1 15541 yonedalem21 15542 yonedalem3a 15543 yonedalem4c 15546 yonedalem22 15547 yonedalem3b 15548 yonedainv 15550 yonffthlem 15551 ablfac1eulem 17123 lsmsp 17732 lsppratlem3 17795 mplcoe1 18127 mdetunilem9 19122 filufint 20421 fmfnfmlem4 20458 hausflim 20482 fclsfnflim 20528 fsumcn 21374 mbfeqalem 22049 itgfsum 22233 jensenlem1 23316 jensenlem2 23317 gsumvsca1 27773 gsumvsca2 27774 ordtconlem1 27906 vhmcls 28926 mclsppslem 28943 rngunsnply 31122 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-v 3111 df-un 3480 df-in 3482 df-ss 3489 |
Copyright terms: Public domain | W3C validator |