Metamath Proof Explorer
< Previous
Next >
Nearby theorems
Mirrors
>
Home
>
MPE Home
>
Th. List
> unv
Unicode version
Theorem
unv
3813
Description:
The union of a class with the universal class is the universal class. Exercise 4.10(l) of [
Mendelson
] p. 231. (Contributed by NM, 17-May-1998.)
Assertion
Ref
Expression
unv
Proof of Theorem
unv
Step
Hyp
Ref
Expression
1
ssv
3523
. 2
2
ssun2
3667
. 2
3
1
,
2
eqssi
3519
1
Colors of variables:
wff
setvar
class
Syntax hints:
=
wceq
1395
cvv
3109
u.
cun
3473
This theorem is referenced by:
oev2
7192
This theorem was proved from axioms:
ax-mp
5
ax-1
6
ax-2
7
ax-3
8
ax-gen
1618
ax-4
1631
ax-5
1704
ax-6
1747
ax-7
1790
ax-10
1837
ax-11
1842
ax-12
1854
ax-13
1999
ax-ext
2435
This theorem depends on definitions:
df-bi
185
df-or
370
df-an
371
df-tru
1398
df-ex
1613
df-nf
1617
df-sb
1740
df-clab
2443
df-cleq
2449
df-clel
2452
df-nfc
2607
df-v
3111
df-un
3480
df-in
3482
df-ss
3489
Copyright terms:
Public domain
W3C validator